Abstract

Alan Powell has made significant contributions to the understanding of many aeroacoustic problems, in particular, the problems of broadband noise from jets and boundary layers. In this paper, some analytic results are presented for the calculation of the correlation function of the broadband noise radiated from a wing, a propeller, and a jet in uniform forward motion. It is shown that, when the observer (or microphone) motion is suitably chosen, the geometric terms of the radiation formula become time independent. The time independence of these terms leads to a significant simplification of the statistical analysis of the radiated noise, even when the near field terms are included. For a wing in forward motion, if the observer is in the moving reference frame, then the correlation function of the near and far field noise can be related to a space-time cross-correlation function of the pressure on the wing surface. A similar result holds for a propeller in forward flight if the observer is in a reference frame that is attached to the propeller and rotates at the shaft speed. For a jet in motion, it is shown that the correlation function of the radiated noise can be related to the space-time cross-correlation of the Lighthill stress tensor in the jet. Exact analytical results are derived for all three cases. For the cases under present consideration, the inclusion of the near field terms does not introduce additional complexity, as compared to existing formulations that are limited to the far field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.