Abstract
Let Rq(r,n) denote the rth order Reed-Muller code of length qn over Fq. We consider two algebraic questions about the Reed-Muller code. Let Hq(r,n)=Rq(r,n)/Rq(r−1,n). (1) When q=2, it is known that there is a “duality” between the actions of GL(n,F2) on H2(r,n) and on H2(r′,n), where r+r′=n. The result is false for a general q. However, we find that a slightly modified duality statement still holds when q is a prime or r<charFq. (2) Let F(Fqn,Fq) denote the Fq-algebra of all functions from Fqn to Fq. It is known that when q is a prime, the Reed-Muller codes {0}=Rq(−1,n)⊂Rq(0,n)⊂⋯⊂Rq(n(q−1),n)=F(Fqn,Fq) are the only AGL(n,Fq)-submodules of F(Fqn,Fq). In particular, Hq(r,n) is an irreducible GL(n,Fq)-module when q is a prime. For a general q, Hq(r,n) is not necessarily irreducible. We determine all its submodules and the factors in its composition series. The factors of the composition series of Hq(r,n) provide an explicit family of irreducible representations of GL(n,Fq) over Fq.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.