Abstract

In this article, a number of the results relevant to the concept of sublattices of a basic crystallographic lattice are reviewed, emphasizing particularly previously unpublished work on the algebraic aspects. A three-dimensional geometric lattice L can be considered as an infinite Abelian group under addition. A sublattice S of L, which is also three-dimensional, is a subgroup of L such that the finite quotient group, G approximately equals L/S, is an Abelian group of order the index of S in L. The sublattice itself in its standard form is represented by an upper triangular matrix. The index of the sublattice is given by the determinant of this matrix. It is first noted that a sublattice described by an arbitrary basis set in L may be converted to this standard form. Next the sublattice is expressed as the intersection of a set of sublattices of individual index a power of a distinct prime, i.e. S(n = p(a)(1)p(b)(2)...) = S(1)(p(a)(1)[cap]S(2)(p(b)(2)...[cap]... = [bigcap](i)S(i)(p(alpha(i)), where p(1), p(2) etc. are prime numbers and n = Pi(i)p(alpha)(i) is the Euclidean factorization of n. This decomposition is important because it corresponds to the Sylow decomposition of the corresponding quotient group G approximately equals (i)[sign: see text] A(p)(i). It is also useful to be able to carry out two commutative binary operations on sublattices of L; these are to find their common sublattice of lowest index in L, which is their intersection S(cap) = S(a)(m)[cap]S(b)(n) and their common superlattice of highest index in L, given by S(< >) = <S(a)(m), S(b)(n)>, where < > indicates the span of the sublattices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.