Abstract

The location of the human spinothalamic tract (STT) in the anterolateral spinal cord has been known for more than a century. The exact nature of the neuronal fiber lamination within the STT, however, remains controversial. After correlating in vivo macrostimulation-induced pain/temperature sensation during percutaneous cervical cordotomy with simultaneous CT imaging of the electrode tip location, the authors present a modern description of the somatotopy of the human cervical STT. Twenty patients underwent CT-guided percutaneous cervical cordotomy to alleviate contralateral medication-refractory cancer pain. Patient responses to electrical stimulation (0.01-0.1 V, 50 Hz, 1 msec) were recorded and the electrode location for each response was documented with a contemporaneous CT scan. In a post hoc analysis of the data, the location for each patient's response(s) was measured and drawn on a diagram of their cord. Positive responses were represented only when the lowest possible voltage (≤ 0.02 V) elicited a response. Negative responses were recorded if there was no clinical response at 0.1 V. Clinically, patients did well with an average reduction in opiates of 75% at 1 week, and 67% were able to leave the palliative care unit. The size of the cervical cord varied between patients, with an average lateral extent (width) of 11 mm and a height of 9 mm. Responses from the lower limb were represented superficially (lateral) and posteriorly within the anterolateral cord. The area with responses from the upper limb was larger and surrounded those with responses from the lower limb primarily anteriorly and medially, but also posteriorly. In this study, the somatotopic organization of the human STT was elucidated for the first time using in vivo macrostimulation and contemporaneous CT imaging during cordotomy. In this cohort of patients, the STT from the lower-limb region was located superficially and posteriorly in the anterolateral quadrant of the cervical cord, with the STT from the upper-limb region surrounding it primarily anteriorly and medially (deep) but also posteriorly. The authors discuss how the previous methods of cordotomy may have biased the earlier versions of STT lamination. They suggest that an ideal spinal cord entry site for cordotomy of either the upper- or lower-limb pain fibers is halfway between the equator and anterior pole of the cord.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.