Abstract

The roles of G-protein coupled receptors (GPCRs) in stem cell biology remain unclear. In this study, we aimed to identify GPCRs that might contribute to the self-renewal of mouse embryonic stem cells (mESCs). The expression levels of pluripotent genes and GPCR gene were detected in E14 mESCs using PCR array and RT-PCR. Immunofluorescent staining was used to examine the expression of pluripotent markers and the receptor translocation. Western blot analysis was used to detect phosphorylation of signal proteins. Knock-down of receptor was conducted to confirm its role in pluripotency maintenance. In leukemia inhibitory factor (LIF)-free medium, mESCs lost the typical morphology of pluripotency, accompanied by markedly decreases in expression of somatostatin receptor type 2 (SSTR2), as well as the pluripotency biomarkers Oct4, Sox2, Rex1 and Nanog. Addition of the SSTR2 agonist octreotide or seglitide (0.1-30 μmol/L) in LIF-free medium dose-dependently promoted the self-renewal of mESCs, whereas the SSTR2 antagonist S4 (0.03-3 μmol/L) dose-dependently blocked octreotide-induced self-renewal. Knock-down of SSTR2 significantly decreased the self-renewal of mESCs even in the presence of LIF. Addition of LIF (1000 U/mL) or octreotide (1 μmol/L) in LIF-free medium significantly increased both phosphorylation and nuclear ocalization of STAT3. The activation of SSTR2 contributes to the self-renewal of mESCs via activation of the STAT3 pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call