Abstract

Somatostatin inhibits gall bladder contraction. Impaired gall bladder emptying is associated with gall bladder stone formation. The incidence of cholecystolithiasis is high in patients treated with a somatostatin agonist octreotide, which predominantly interacts with somatostatin receptor subtype 2 (SSTR2). Therefore, it is believed that SSTR2 regulates gall bladder contraction; however, evidence has not been provided. Here, we evaluate the effects of SSTR1-SSTR5-selective agonists on egg yolk-induced gall bladder contraction in mice. Homozygous deletion of SSTR2 and SSTR5 was generated by cross-mating of SSTR2(-/-) with SSTR5(-/-) mice. Mice of different genotypes were injected with SSTR1-5-selective agonists or octreotide 15 min before induction of gall bladder emptying by egg yolk. One hour later, gall bladders were removed and weighed. Egg yolk-reduced gall bladder weights in all mice, irrespective of their genotype. Octreotide was the most potent inhibitor of gall bladder emptying in wild-type mice. In contrast, agonists with high selectivity for SSTR2 or SSTR5 inhibited gall bladder emptying by approximately 50-60%, whereas SSTR1-, SSTR3- and SSTR4-selective agonists failed to influence gall bladder contraction. In SSTR2(-/-) mice, octreotide and an SSTR5-selective agonist inhibited gall bladder emptying by approximately 50%, whereas SSTR2-selective agonists were inactive. Octreotide inhibited gall bladder emptying in SSTR5(-/-) mice by approximately 50%, without any effect in SSTR2(-/-)/SSTR5(-/-) mice. Our study provides evidence for the role of SSTR2 and SSTR5 in regulating gall bladder emptying in mice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call