Abstract

1. Somatotrophs from enzymatically dispersed anterior pituitary glands of rats, enriched to greater than 94% purity by density gradient centrifugation, were studied within 16 h of isolation using patch clamp recording methods in the conventional whole-cell and the perforated-patch configurations. 2. Rhythmic oscillations of membrane potential gave rise to action potentials in thirty-six of fifty-two cells studied with the perforated-patch technique. Membrane potential oscillated between approximately -70 mV and approximately -25 mV with an average frequency (mean +/- S.D.) of 0.9 +/- 0.9 s-1. 3. The current-voltage (I-V) relationship of cells was linear at negative potentials with outward rectification at potentials positive to -40 mV. Evidence that the outward current was due to K+ channels came from the deactivation tail currents, which reversed direction close to the K+ equilibrium potential (EK). The reversal potential shifted 60 mV per tenfold change of external K+ concentration ([K+]o), as expected for K+ current. 4. Suppression of outward current by tetraethylammonium (TEA) provided additional evidence for K+ current. Cd2+ reduced outward current, suggesting the presence of Ca(2+)-activated K+ conductance. 5. Depolarizing commands elicited transient inward Na+ current and a sustained Ca2+ current (ICa). ICa was recorded in isolation with Cs+ and TEA in the recording pipette and 10 mM-Ba2+ as the charge carrier. Activation of ICa began at approximately -40 mV, with peak inward current at 0 to +10 mV. The half-inactivation potential was approximately -35 mV. In addition, ICa was blocked by nifedipine. These characteristics indicate the presence of L-type Ca2+ channels in somatotrophs. 6. Somatostatin caused hyperpolarization and suppressed the spontaneous bursts of action potentials. Under voltage clamp, somatostatin activated an inwardly rectifying current that reversed direction near EK. When EK was altered by elevation of [K+]o, the reversal potential of the somatostatin-induced current shifted 55 mV per tenfold change of [K+]o, as predicted for a K+ current by the Nernst relation. The somatostatin-induced conductance (gK) was greater at more negative potentials, and the activation range shifted positive with elevation of [K+]o. 7. We conclude that freshly isolated rat somatotrophs possess Na+, Ca2+ and K+ currents. A large proportion of the cells exhibit spontaneous bursts of action potentials. Somatostatin activates an inwardly rectifying K+ conductance, causing hyperpolarization and cessation of spontaneous action potential activity, actions that would contribute to suppression of growth hormone release.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.