Abstract

ObjectiveTo investigate whether changes in the somatosensory temporal discrimination threshold (STDT) in Parkinson’s disease (PD) and dystonia reflect the involvement of specific neural structures or mechanisms related to tremor, and whether the STDT can discriminate patients with PD, dystonia or essential tremor (ET). MethodsWe tested STDT in 223 patients with PD, dystonia and ET and compared STDT values in patients with PD and dystonia with tremor with those of PD and CD without tremor. Data were compared with those of age-matched healthy subjects. ResultsSTDT values were high in patients with dystonia and PD but normal in ET. In PD, STDT values were similar in patients with resting or postural/action tremor and in those without tremor. In dystonia, STDT values were higher in patients with tremor than in those without tremor. The ROC curve showed that STDT discriminates tremor in dystonia from ET. ConclusionsIn PD, STDT changes likely reflect basal ganglia abnormalities and are unrelated to tremor mechanisms. In dystonia, the primary somatosensory cortex and cerebellum play an additional role. SignificanceSTDT provides information on the pathophysiological mechanisms of patients with movement disorders and may be used to differentiate patients with dystonia and tremor from those with tremor due to ET.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.