Abstract

Functional near-infrared spectroscopy (fNIRS) is an optical imaging technique measuring relative hemodynamic changes in superficial cortical structures. It has successfully been applied to detect a hemodynamic response in the somatosensory cortex evoked by irritating mechanical, electrical, and heat stimulations of limbs or the face. The aim of the current study was to explore the feasibility of fNIRS to detect respective responses evoked by irritating chemical stimulations of the nasal divisions of the trigeminal nerve. In two experiments, healthy subjects were exposed to acetic acid and ethyl acetate presented using a respiration-synchronized olfactometer. Results demonstrated that fNIRS can detect a signal in both hemispheres after birhinal (experiment 1: n = 14) and monorhinal (experiment 2: n = 12) stimulations using acetic acid but not ethyl acetate. This is a first evidence that fNIRS might be a suitable imaging technique to assess chemosensory neuronal correlates in the somatosensory cortex thereby offering a new, portable method to evaluate the irritating properties of certain volatiles in an objective, nonverbal, easy, and comparably inexpensive manner.

Highlights

  • Functional near-infrared spectroscopy is an optical imaging technique measuring relative hemodynamic changes in superficial cortical structures

  • The interval in which the maximal hemodynamic response was expected was theoretically derived from previous Functional near-infrared spectroscopy (fNIRS) and functional magnetic resonance imaging (fMRI) studies investigating the hemodynamic response evoked by chemical and overall irritating stimuli

  • The focus was set on the later phase of the reported time span and the interval of 10 to 15 seconds after stimulus onset was predefined as the temporal window of interest

Read more

Summary

Introduction

Functional near-infrared spectroscopy (fNIRS) is an optical imaging technique measuring relative hemodynamic changes in superficial cortical structures. Results demonstrated that fNIRS can detect a signal in both hemispheres after birhinal (experiment 1: n = 14) and monorhinal (experiment 2: n = 12) stimulations using acetic acid but not ethyl acetate. This is a first evidence that fNIRS might be a suitable imaging technique to assess chemosensory neuronal correlates in the somatosensory cortex thereby offering a new, portable method to evaluate the irritating properties of certain volatiles in an objective, nonverbal, easy, and comparably inexpensive manner. Among the cortical endpoints of the trigeminal pathway are the primary and secondary somatosensory cortices (SSC)[22,23,24] which are accessible via fNIRS

Objectives
Methods
Results

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.