Abstract

The intricate relation between action and somatosensory perception has been studied extensively in the past decades. Generally, a forward model is thought to predict the somatosensory consequences of an action. These models propose that when an action is reliably coupled to a tactile stimulus, unexpected absence of the stimulus should elicit prediction error. Although such omission responses have been demonstrated in the auditory modality, it remains unknown whether this mechanism generalizes across modalities. This study therefore aimed to record action-induced somatosensory omission responses using EEG in humans. Self-paced button presses were coupled to somatosensory stimuli in 88% of trials, allowing a prediction, or in 50% of trials, not allowing a prediction. In the 88% condition, stimulus omission resulted in a neural response consisting of multiple components, as revealed by temporal principal component analysis. The oN1 response suggests similar sensory sources as stimulus-evoked activity, but an origin outside primary cortex. Subsequent oN2 and oP3 responses, as previously observed in the auditory domain, likely reflect modality-unspecific higher order processes. Together, findings straightforwardly demonstrate somatosensory predictions during action and provide evidence for a partially amodal mechanism of prediction error generation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.