Abstract

BackgroundDual-site transcranial magnetic stimulation (ds-TMS) is a neurophysiological technique to measure functional connectivity between cortical areas. Objective/HypothesisTo date, no study has used ds-TMS to investigate short intra-hemispheric interactions between the somatosensory areas and primary motor cortex (M1). MethodsWe examined somatosensory-M1 interactions in the left hemisphere in six experiments using ds-TMS. In Experiment 1 (n = 16), the effects of different conditioning stimulus (CS) intensities on somatosensory-M1 interactions were measured with 1 and 2.5 ms inter-stimulus intervals (ISIs). In Experiment 2 (n = 16), the time-course of somatosensoy-M1 interactions was studied using supra-threshold CS intensity at 6 different ISIs. In Experiment 3 (n = 16), the time-course of short-interval cortical inhibition (SICI) and effects of different CS intensities on SICI were measured similar to Experiments 1 and 2. Experiment 4 (n = 13) examined the effects of active contraction on SICI and somatosensory-M1 inhibition. Experiments 5 and 6 (n = 10) examined the interactions between SAI with either 1 ms SICI or somatosensory-M1 inhibition. ResultsExperiments 1 and 2 revealed reduced MEP amplitudes when applying somatosensory CS 1 ms prior to M1 TS with 140 and 160% CS intensities. Experiment 3 demonstrated that SICI at 1 and 2.5 ms did not correlate with somatosensory-M1 inhibition. Experiment 4 found that SICI but not somatosensory-M1 inhibition was abolished with active contraction. The results of Experiments 5–6 showed SAI was disinhibited in presence of somatosensory-M1 while SAI was increased in presence of SICI. ConclusionCollectively, the results support the notion that the somatosensory areas inhibit the ipsilateral M1 at very short latencies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call