Abstract

1. Latencies to peripheral sensory stimulation were examined in four classes of antidromically identified efferent neurons in the primary somatosensory cortex (S1) of awake rabbits. Both suprathreshold responses (action potentials) and subthreshold responses were examined. Subthreshold responses were examined by monitoring the thresholds of efferent neurons to juxtasomal current pulses (JSCPs) delivered through the recording microelectrode (usually 1-3 microA). Through the use of this method, excitatory postsynaptic potentials (EPSPs) and inhibitory postsynaptic potentials (IPSPs) were manifested as decreases and increases in threshold, respectively. Efferent populations examined included callosal (CC) neurons, ipsilateral corticocortical (C-IC) neurons, and descending corticofugal neurons of layer 5 (CF-5) and layer 6 (CF-6). Very brief air puffs (rise and fall times 0.6 ms) were delivered to the receptor periphery via a high-speed solenoid valve. 2. Whereas all CF-5 neurons had demonstrable suprathreshold excitatory and/or inhibitory responses to peripheral stimulation, most CC, C-IC, and CF-6 neurons did not. CC and CF-6 neurons that yielded no suprathreshold response to the stimulus had lower axonal conduction velocities than those that did respond (P < 0.0001 in both cases). However, subthreshold receptive fields could be demonstrated in many of the otherwise unresponsive CC (81%), C-IC (88%), and CF-6 (43%) neurons. The subthreshold responses usually consisted of an initial excitatory component (a decrease in the threshold to the JSCP) and a subsequent long-duration (> 80 ms) inhibitory component. A few neurons (1 CC, 1 C-IC, and 5 CF-6) showed an initial short latency inhibitory response in the absence of any excitatory component. 3. Some CC and C-IC neurons yielded supra- and/or subthreshold responses to peripheral stimulation at latencies of 6.1-7 ms. All such neurons were found at intermediate cortical depths (thought to correspond to deep layer 2-3 through layer 5). It is argued that such latencies are indicative of monosynaptic activation via thalamic afferents. Very superficial CC and C-IC neurons, and all CF-6 neurons responded to latencies of > 7 ms. All CF-5 neurons responded to latencies of > 8 ms, although many were found at the same depth as the deeper CC and C-IC neurons that responded at monosynaptic latencies. These results indicate that cortical cell type as well as laminar position are important factors that determine the sequence of intracortical neuronal activation after peripheral sensory stimulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.