Abstract

Somatodendritic (STD) dopamine (DA) release is a key mechanism for the autoregulatory control of DA release in the brain. However, its molecular mechanism remains undetermined. We tested the hypothesis that differential expression of synaptotagmin (Syt) isoforms explains some of the differential properties of terminal and STD DA release. Down-regulation of the dendritically expressed Syt4 and Syt7 severely reduced STD DA release, whereas terminal release required Syt1. Moreover, we found that although mobilization of intracellular Ca(2+) stores is inefficient, Ca(2+) influx through N- and P/Q-type voltage-gated channels is critical to trigger STD DA release. Our findings provide an explanation for the differential Ca(2+) requirement of terminal and STD DA release. In addition, we propose that not all sources of intracellular Ca(2+) are equally efficient to trigger this release mechanism. Our findings have implications for a better understanding of a fundamental cell biological process mediating transcellular signaling in a system critical for diseases such as Parkinson disease.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.