Abstract

A standard strategy to discover somatic mutations in a cancer genome is to use next-generation sequencing (NGS) technologies to sequence the tumor tissue and its matched normal (commonly blood or adjacent normal tissue) for side-by-side comparison. However, when interrogating entire genomes (or even just the coding regions), the number of sequencing errors easily outnumbers the number of real somatic mutations by orders of magnitudes. Here, we describe SomaticSeq, which incorporates multiple somatic mutation detection algorithms and then uses machine learning to vastly improve the accuracy of the somatic mutation call sets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.