Abstract

Somatic mutations in ubiquitin-specific protease-8 (USP8), encoding a deubiquinating protein, are found in approximately 30% of corticotroph-derived pituitary adenomas (CPAs). Stratifin, a protein encoded by SFN, inhibits USP8 catalytic activity. USP8 has immunomodulating properties that have been demonstrated in non-tumoral diseases. We assessed the influence of USP8 on the immune landscape of CPA and validated this effect and its dependency on stratifin in large cohorts of non-pituitary tumors. We analyzed data of CPA samples (n = 20) and additional non-pituitary tumors from the TCGA database, using transcriptome signature-recognition algorithms. Immune tumor microenvironment (iTME) was compared both by USP8 and SFN expression levels (n = 843) and by USP8 mutation status and SFN expression (n = 12,389). CPA with activating USP8 mutations was associated with "cold" iTME compared with wild-type USP8 CPA, as reflected by lower fractions of immune cells, including B cells, CD4, regulatory and gamma/delta T cells, natural killer cells, M0 and M1 macrophages, dendritic cells, and eosinophils (p < 0.05 for all comparisons). Pathways altered by the presence of USP8 mutation, based on the most differentially expressed genes (3061 genes), included microglia pathogen phagocytosis and multiple toll-like receptor signaling pathways (p < 0.0001). In a validation analysis based on large cohorts of non-pituitary tumors, high expression of USP8 was associated with a suppressed iTME effect that was augmented by a low SFN expression. Our data demonstrate for the first time, to our knowledge, a distinct immune landscape of tumors based on USP8 status and expression and the dependency of this immunological effect on SFN expression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call