Abstract

The objectives of the present research were: a) to develop an efficient soybean embryogenic regeneration system characterized by a high frequency of explant response and a large number of somatic embryos per explant; b) to evaluate the factors affecting somatic embryogenesis via somatic embryo cycling; and c) to identify the origin of somatic embryos in the system. A highly improved and efficient system for soybean somatic embryogenesis was established using somatic embryo cotyledons and somatic embryo hypocotyl/radicle explants plated on α-naphthaleneacetic acid (NAA) or 2,4-dichlorophenoxyacetic acid (2,4-D) supplemented MS basal media. The system included somatic embryo cycling between liquid and solid medium and it consistently gave rise to a much higher frequency of explant response and a larger number of embryos per responding explant than those obtained from zygotic cotyledon explant tissues. Genotype, differences were observed for response in some of the treatments with cv “Fayette” being more responsive than “J103”. Histological studies revealed that somatic embryos induced in the somatic embryo cycling system originated almost exclusively from epidermal cells on both 2,4-D and NAA inductive media. The cells of the epidermis proliferated to produce somatic embryos directly without an intervening callus phase. A single-cell origin of somatic embryos was observed in cultures on a 40 mg/liter 2,4-D treatment. A large number of responding cells in the epidermis was also observed in the 10 mg/liter NAA treatment. The single-cell origin of somatic embryos from epidermal layers of the explant tissues should facilitate development of an efficient transformation system for soybean.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call