Abstract
Efficient plant regeneration through somatic embryogenesis was achieved from callus cultures derived from semi-mature cotyledon explants of Dalbergia sissoo Roxb., a timber-yielding leguminous tree. Somatic embryos developed over the surface of embryogenic callus and occasionally, directly from cotyledon explants without intervening callus phase. Callus cultures were initiated from cotyledon pieces of D. sissoo on Murashige and Skoog (1962) medium supplemented with 4.52, 9.04, 13.57, and 18.09 mumol/L 2,4-dichlorophenoxyacetic acid and 0.46 mumol/L Kinetin. Maximum percentage response for callus formation was 89% on MS medium supplemented with 9.04 mumol/L 2,4-D' and 0.46 mumol/L Kn. Somatic embryogenesis was achieved after transfer of embryogenic callus clumps to 1/2-MS medium without plant growth regulators (1/2-MSO). Average numbers of somatic embryos per callus clump was 26.5 on 1/2-MSO medium after 15 weeks of culture. Addition of 0.68 mmol/L L-glutamine to 1/2-MSO medium enhanced somatic embryogenesis frequency from 55% to 66% and the number of somatic embryos per callus clump from 26.5 to 31.1. Histological studies were carried out to observe various developmental stages of somatic embryos. About 50% of somatic embryos converted into plantlets on 1/2-MSO medium containing 2% sucrose, after 20 days of culture. Transfer of somatic embryos to 1/29-MSO medium containing 10% sucrose for 15 days prior to transfer on 1/2-MS medium with 2% sucrose enhanced the conversion of somatic embryos into plantlets from 50 to 75%. The plantlets with shoots and roots were transferred to 1/2 and 1/4-liquid MS medium, each for 10 days, and then to plastic pots containing autoclaved peat moss and compost mixture (1:1). 70% of the plantiets survived after 10 weeks of transfer to pots. 120 regenerated plantlets out of 150 were successfully acclimatised. After successful acclimatisation, plants were transferred to earthen pots.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.