Abstract

Rose (Rosa spp.) is not only an important ornamental plant, but also an economical crop. It contains thousands of cultivars and has been grown throughout the world. As most rose cultivars suffer from biotic and abiotic stress, it is necessary and significant to improve the ornamental or agronomic traits. Genetic engineering provides an efficient and convenient way for overcoming these problems. Somatic embryogenesis is widely utilized for plant regeneration and genetic transformation; it is also usually utilized to perform the genetic manipulation in plant molecular breeding. Up to now, somatic embryogenesis and genetic transformation have been applied successfully in many plant species including woody and herbaceous plants. There is some information reporting transgenic roses with altered flower colors, increased disease resistance, or with modified agronomic traits. This chapter discusses somatic embryogenesis, the factors influencing somatic embryogenesis, and the protocol to realize plant regeneration via somatic embryogenesis in rose. The chapter also reviews Agrobacterium-mediated genetic transformation, the factors controlling transformation, and the overall protocol to obtain transgenic mediated by cyclic secondary somatic embryogenesis. This somatic embryogenesis and Agrobacterium-mediated genetic transformation may provide a feasible effective method to gene functional studies and gene engineering breeding in Rosa sp. in future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call