Abstract

There is growing evidence that maternal nutrition during gestation has an important effect on offspring development as well as on their gene expression with long-term effects on the metabolic state. A potential mechanism forming long-lasting gene expression patterns is DNA methylation of cytosine in CpG dinucleotides within the promoter region of distinct genes. There has been special focus on mitochondrial dysfunction by prenatal malnourishment over the recent years. To this end, we investigated the gene expression of somatic cytochrome c (CYCS), an important member of the respiratory chain, in a porcine model of gestational protein over- and undersupply at 94 d post-conception and 1, 28 and 188 d of age, and analysed the association with the DNA methylation status within the CYCS promoter. Gene expression on day 1 post natum showed a significant increase in the low protein (LP) group (P = 0·0005) and a slight increase in the high protein (HP) group (P = 0·079) compared with the control (CO) group in the liver. The mean of the methylation level over forty-seven CpG sites from nucleotide (nt) - 417 to - 10 was significantly decreased in the LP (P = 0·007) and HP (P = 0·009) groups compared with that in the CO group. Excess and restricted protein supply during pregnancy led to hypomethylation of a number of CpG sites in the CYCS promoter, including those representing putative transcription factor-binding sites, associated with elevated expression levels. However, the impact of the low-protein gestation diet is more pronounced, indicating that the offspring could better adapt to excess rather than restricted protein supply.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.