Abstract

To analyse the potential drivers (glucose level, complications, diabetes type, gender, age and mental health) of diabetes symptoms using continuous glucose monitoring (CGM) and ecological momentary assessment. Participants used a smartphone application to rate 25 diabetes symptoms in their daily lives over 8 days. These symptoms were grouped into four blocks so that each symptom was rated six times on 2 days (noon, afternoon and evening). The symptom ratings were associated with the glucose levels for the previous 2 hours, measured with CGM. Linear mixed-effects models were used, allowing for nested random effects and the conduct of N = 1 analysis of individual associations. In total, 192 individuals with type 1 diabetes and 179 with type 2 diabetes completed 6380 app check-ins. Four symptoms showed a significant negative association with glucose values, indicating higher ratings at lower glucose (speech difficulties, P = .003; coordination problems, P = .00005; confusion, P = .049; and food cravings, P = .0003). Four symptoms showed a significant positive association with glucose values, indicating higher scores at higher glucose (thirst, P = .0001; urination, P = .0003; taste disturbances, P = .021; and itching, P = .0120). There were also significant positive associations between microangiopathy and eight symptoms. Elevated depression and diabetes distress were associated with higher symptom scores. N = 1 analysis showed highly idiosyncratic associations between symptom reports and glucose levels. The N = 1 analysis facilitated the creation of personalized symptom profiles related to glucose levels with consideration of factors such as complications, gender, body mass index, depression and diabetes distress. This approach can enhance precision monitoring for diabetes symptoms in precision medicine.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.