Abstract

Coincidence detector neurons transmit timing information by responding preferentially to concurrent synaptic inputs. Principal cells of the medial superior olive (MSO) in the mammalian auditory brainstem are superb coincidence detectors. They encode sound source location with high temporal precision, distinguishing submillisecond timing differences among inputs. We investigate computationally how dynamic coupling between the input region (soma and dendrite) and the spike-generating output region (axon and axon initial segment) can enhance coincidence detection in MSO neurons. To do this, we formulate a two-compartment neuron model and characterize extensively coincidence detection sensitivity throughout a parameter space of coupling configurations. We focus on the interaction between coupling configuration and two currents that provide dynamic, voltage-gated, negative feedback in subthreshold voltage range: sodium current with rapid inactivation and low-threshold potassium current, IKLT. These currents reduce synaptic summation and can prevent spike generation unless inputs arrive with near simultaneity. We show that strong soma-to-axon coupling promotes the negative feedback effects of sodium inactivation and is, therefore, advantageous for coincidence detection. Furthermore, the feedforward combination of strong soma-to-axon coupling and weak axon-to-soma coupling enables spikes to be generated efficiently (few sodium channels needed) and with rapid recovery that enhances high-frequency coincidence detection. These observations detail the functional benefit of the strongly feedforward configuration that has been observed in physiological studies of MSO neurons. We find that IKLT further enhances coincidence detection sensitivity, but with effects that depend on coupling configuration. For instance, in models with weak soma-to-axon and weak axon-to-soma coupling, IKLT in the axon enhances coincidence detection more effectively than IKLT in the soma. By using a minimal model of soma-to-axon coupling, we connect structure, dynamics, and computation. Although we consider the particular case of MSO coincidence detectors, our method for creating and exploring a parameter space of two-compartment models can be applied to other neurons.

Highlights

  • Neurons that spike selectively to multiple subthreshold inputs that arrive within brief time windows are coincidence detectors

  • We formulate and study a minimal mathematical model that describes the dynamical coupling between the input and output regions of a neuron

  • We use simulations to explore coincidence detection sensitivity throughout the parameter space of input-output coupling and to identify the coupling configurations that are best for neural coincidence detection

Read more

Summary

Introduction

Neurons that spike selectively to multiple subthreshold inputs that arrive within brief time windows are coincidence detectors. Principal cells of the medial superior olive (MSO) in the mammalian auditory brainstem are a canonical example: they receive inputs originating from both ears [13, 14] and are sensitive to microsecond-scale differences in the timing of arriving inputs [15,16,17,18]. These coincidence detector neurons are critical for sound-source localization [19] and likely play important roles in other aspects of binaural (two-eared) hearing such as sensitivity to interaural correlation [20, 21]

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.