Abstract
Tungsten trioxide (WO3) is a classical electrochromic (EC) material with advantages of abundant reserves, high coloration efficiency and cyclic stability. However, WO3 films are often accompanied by a narrow spectrum of modulation due to a single-color change from transparent to blue. In this work, we report a wide-spectrum tunable WO3·H2O nanosheets EC film solvothermally grown on fluorine-doped tin oxide (FTO) glass. Interestingly, the crystalline WO3·H2O nanosheets film is transformed into amorphous WO3 after annealing at 250 °C for 1 h. The amorphous film can be transformed into crystalline WO3 film by increasing the annealing temperature to 450 °C. After annealing at 250 °C, the WO3 film exhibits an optical modulation of 75.8% in a broad solar spectrum range of 380–1400 nm and blocks 88.9% of solar irradiance. Fast switching responses of 4.9 s for coloration and 6.0 s for bleaching, and a coloration efficiency of 86.4 cm2 C−1 are also achieved. Additionally, the WO3 film annealed at 250 °C also demonstrates an excellent cyclic stability, where 99.6% of the initial optical modulation can be retained after 1500 cycles. This simple and mild solvothermal method used in this work provides a new idea for the preparation of wide-spectrum tunable WO3 EC films.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.