Abstract

In this research, three Pd decorated Ni and Co catalyst nanoparticle were synthesized on reduced graphene oxide (rGO) supports are synthesized through a facile solvothermal procedure. Borohydride oxidation reaction (BOR) activity and performance of prepared electrocatalysts respect to NaBH4 oxidation is evaluated by various electrochemical techniques in the three-electrode and the fuel cell configuration. Among the prepared catalysts, Pd10–Ni45–Co45/rGO exhibits the highest BOR activity. The cyclic voltammograms showed that the measured current at 0.5 V for the electrode of Pd10–Ni45–Co45/rGO is as much as 108 mA cm−2 higher than Pd10–Ni90/rGO and 185 mA cm−2 higher than Pd10Co90/rGO. X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectra were employed to study the morphology and crystal structure of the prepared catalyst. The results of DBFC test show that the Pd10–Ni45–Co45/rGO nanoparticles as anodic catalyst, enhanced power density to 50.4 mW cm−2 which is 10.5% and 45.2% higher than power density of DBFCs with Pd10–Ni90/rGO (45.6 mW cm−2) and Pd10Co90/rGO (34.7 mW cm−2) anode catalysts, respectively. These results indicate that the competency of operating procedure for assembling nickel alloys electrodes can improve the activity of the prepared catalysts for BOR considerably.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call