Abstract

Urea and nitrate-based fuel cells have emerged as promising electricity generation devices. However, most of these catalysts are expensive and limited in supply, which limits their practical applications. Hence, metal-organic frameworks (MOF) have been explored as catalysts due to their low cost, easy preparation, and high redox activity. Here, we synthesize nickel-based MOF (Ni-MOF) via one-pot solvothermal technique as bifunctional electrocatalyst for the direct urea and nitrate fuel cell. The as-synthesized Ni-MOF is deposited on nickel foam (NF) and used as working electrode (Ni-MOF/NF) which demonstrates a peak current density of 188 mA/cm2 for urea oxidation reaction (UOR) and −14 mA/cm2 for nitrate reduction reaction (NRR) at an onset potential of ∼ 1.58 V (vs RHE), and ∼ 1.12 V (vs RHE), respectively The enhanced functionality of the Ni-MOF/NF electrode can be attributed to the high catalytic efficacy of the Ni-MOF. This is mainly due to the presence of multiple oxidation states of N (i.e., Ni2+/3+) and excellent electronic conductivity of the organic ligands in MOF structure. Moreover, Ni-MOF/NF electrodes retain ∼ 71.2% and ∼ 83.9% capacity after 20000 s of UOR and NRR, respectively. This efficacy of the as-fabricated electrocatalyst proves MOF as a promising platform for direct fuel cell applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call