Abstract
In this work, pristine graphene, nitrogen-doped graphene and boron-doped graphene were synthesized by a facile solvothermal process using potassium or lithium nitride as catalyst. The formation mechanism of graphene and doped graphene was discussed, and the chlorine gas generated during the reaction performed a significant role. High yield of graphene and doped graphene can be produced via the solvothermal route with relatively mild conditions, and X-ray photoelectron energy spectroscopy analysis confirmed the doping status and concentration of nitrogen or boron within graphene sheets. Especially, electrical properties of graphene-based field effect transistors revealed that the introduction of nitrogen or boron atoms into graphene sheets can effectively tailor electrical property of graphene from conducting characteristics to semiconducting behaviors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Renewable and Sustainable Energy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.