Abstract

Two-dimension covalent organic frameworks (2D COFs) are porous materials with the interlayer π-π interaction and excellent optoelectronic properties. Their adjustable porous structure and designable molecular structure endow them unlimited possibilities in the field of optoelectronic materials and other functional materials. In this paper, 2D COF electrochromic films were prepared by solvothermal synthesis method with different amounts of functionalized carbon nanotubes (FCNT) loading to improve their conductivity. The morphology characterization of COFDAAQ-TFP reveals its intertwined nanofiber structure. The electrochromic performance of COFDAAQ-TFP film shows that the color of COFDAAQ-TFP and FCNT-COFDAAQ-TFP have a reversible transformation from orange to dark brown during the redox process. When the loading amount of FCNT is 1%, FCNT-COFDAAQ-TFP exhibits best electrochromic properties, which has a contrast of 0.358 and coloring time of 5.7 s. Relative to COFs, FCNT-COF has enhanced contrast and stability, which is a potential electrochromic material in many fields such as smart window and smartphone back case.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call