Abstract

AbstractControl of the synthesis of nanomaterials to produce morphologies exhibiting quantized properties will enable device integration of several novel applications including biosensors, catalysis, and optical devices. In this work, solvothermal routes to produce zinc oxide nanorods are explored. Much previous work has relied on the addition of growth directing/inhibiting agents to control morphology. It was found in coarsening studies that zinc oxide nanodots will ripen to nanorod morphologies at temperatures of 90 to 120 °C. The resulting nanorods have widths of 9-12 nm average dimension, which is smaller than current methods for nanorod synthesis. Use of nanodots as nuclei may be an approach that will allow for controlled growth of higher aspect ratio nanorods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call