Abstract

Efficient methods for solving linear-programming problems in exact precision rely on the solution of sparse systems of linear equations over the rational numbers. We consider a test set of instances arising from exact-precision linear programming and use this test set to compare the performance of several techniques designed for symbolic sparse linear-system solving. We compare a direct exact solver based on LU factorization, Wiedemann’s method for black-box linear algebra, Dixon’s p -adic-lifting algorithm, and the use of iterative numerical methods and rational reconstruction as developed by Wan.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.