Abstract

We propose a method called Polynomial Quadratic Convex Reformulation (PQCR) to solve exactly unconstrained binary polynomial problems (UBP) through quadratic convex reformulation. First, we quadratize the problem by adding new binary variables and reformulating (UBP) into a non-convex quadratic program with linear constraints (MIQP). We then consider the solution of (MIQP) with a specially-tailored quadratic convex reformulation method. In particular, this method relies, in a pre-processing step, on the resolution of a semi-definite programming problem where the link between initial and additional variables is used. We present computational results where we compare PQCR with the solvers Baron and Scip. We evaluate PQCR on instances of the image restoration problem and the low auto-correlation binary sequence problem from MINLPLib. For this last problem, 33 instances were unsolved in MINLPLib. We solve to optimality 10 of them, and for the 23 others we significantly improve the dual bounds. We also improve the best known solutions of many instances.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.