Abstract

Groundwater management models are often applied to problems in which the aquifer state is a mildly nonlinear function of managed stresses. The use of the successive linear programming algorithm to solve such problems is examined. The algorithm solves a series of linear programs, each assembled using a response matrix. At each iteration perturbation from the most recent value of the managed stresses is used to estimate response coefficients. Iterations continue until a convergence criterion is met. The algorithm is tested on a water supply problem in Antelope Valley, Calif. where large volumes of water are injected and extracted each year producing a significant nonlinear response in the unconfined aquifer. The algorithm is shown to perform well under a variety of settings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.