Abstract

Droughts are one of the most devastating and recurring natural disaster due to a multitude of reasons. Among the different drought studies, drought forecasting is one of the key aspects of effective drought management. The occurrence of droughts is related to a multitude of factors which is a combination of hydro-meteorological and climatic factors. These variables are non-linear in nature, and neural networks have been found to effectively forecast drought. However, classical neural nets often succumb to over-fitting due to various lag components among the variables and therefore, the emergence of new deep learning and explainable models can effectively solve this problem. The present study uses an Attention-based model to forecast meteorological droughts (Standard Precipitation Index) at short-term forecast range (1-3 months) for five sites situated in Eastern Australia. The main aim of the work is to interpret the model outcomes and examine how a deep neural network achieves the forecasting results. The plots show the importance of the variables along with its short-term and long-term dependencies at different lead times. The results indicate the importance of large-scale climatic indices at different sequence dependencies specific to the study site, thus providing an example of the necessity to build a spatio-temporal explainable AI model for drought forecasting. The use of such interpretable models would help the decision-makers and planners to use data-driven models as an effective measure to forecast droughts as they provide transparency and trust while using these models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.