Abstract

The convolution-type Gurtin variational principle is known as the only variational principle that is, from mathematics point of view, totally equivalent to the initial value problem system. In this paper, the governing equation of bars is first transformed to a new equation containing initial conditions by using convolution method. Then, a convolution-type semi-analytical DQ approach, which involves differential quadrature (DQ) approximation in space domain and an analytical series expansion in time domain, is proposed to obtain the transient response solution. The transient heat transfer examples show the proposed method is a very useful and efficient tool in transient heat transfer problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.