Abstract

We propose a numerical scheme based on the Galerkin method for solving the time-fractional partial differential equations. To this end, after introducing the Chebyshev cardinal functions (CCFs), using the relation between fractional integral and derivative, we represent the Caputo fractional derivative based on these bases and obtain an operational matrix. Applying the Galerkin method and using the operational matrix for the Caputo fractional derivative, the desired equation reduces to a system of linear algebraic equations. By solving this system, the unknown solution is obtained. The convergence analysis for this method is investigated, and some numerical simulations show the accuracy and ability of the technique.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call