Abstract

In this work, we propose an adaptive learning approach based on temporal normalizing flows for solving time-dependent Fokker-Planck (TFP) equations. It is well known that solutions of such equations are probability density functions, and thus our approach relies on modelling the target solutions with the temporal normalizing flows. The temporal normalizing flow is then trained based on the TFP loss function, without requiring any labeled data. Being a machine learning scheme, the proposed approach is mesh-free and can be easily applied to high dimensional problems. We present a variety of test problems to show the effectiveness of the learning approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.