Abstract

A computational protocol has been developed to solve the bounded vibrational Schrödinger equation for up to three coupled coordinates on any given effective potential energy surface (PES). The dynamic Wilson G-matrix is evaluated from the discrete PES calculations, allowing the PES to be parametrized in terms of any complete, minimal set of coordinates, whether orthogonal or non-orthogonal. The partial differential equation is solved using the finite element method (FEM), to take advantage of its localized basis set structure and intrinsic scalability to multiple dimensions. A mixed programming paradigm takes advantage of existing libraries for constructing the FEM basis and carrying out the linear algebra. Results are presented from a series of calculations confirming the flexibility, accuracy, and efficiency of the protocol, including tests on FHF−, picolinic acid N-oxide, trans-stilbene, a generalized proton transfer system, and selected model systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.