Abstract

We study the problem of generating independent samples from the output distribution of Google's Sycamore quantum circuits with a target fidelity, which is believed to be beyond the reach of classical supercomputers and has been used to demonstrate quantum supremacy. We propose a method to classically solve this problem by contracting the corresponding tensor network just once, and is massively more efficient than existing methods in generating a large number of uncorrelated samples with a target fidelity. For the Sycamore quantum supremacy circuit with 53 qubits and 20 cycles, we have generated 1×10^{6} uncorrelated bitstrings s which are sampled from a distribution P[over ^](s)=|ψ[over ^](s)|^{2}, where the approximate state ψ[over ^] has fidelity F≈0.0037. The whole computation has cost about 15h on a computational cluster with 512 GPUs. The obtained 1×10^{6} samples, the contraction code and contraction order are made public. If our algorithm could be implemented with high efficiency on a modern supercomputer with ExaFLOPS performance, we estimate that ideally, the simulation would cost a few dozens of seconds, which is faster than Google's quantum hardware.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.