Abstract

A manifestly Poincare-invariant approach to solving the inverse scattering problem is developed with allowance for inelasticity effects. The equations of the N/D method are used as dynamical equations in this approach. Two versions of the approach are considered. In the first version (method A), the required equations are constructed on the basis of the maximal-analyticity principle, which constitutes the basis of dynamical S-matrix theory. In formulating the second version of equations (method B), it is assumed that a partial-wave scattering amplitude may develop dynamical singularities that violate the requirement of maximal analyticity. The dynamics of interaction components that violate maximal analyticity is described within the model of a nonlocal separable potential. The method is used to analyze nucleon-nucleon interaction in the 1S0 and 3S1 states. The results obtained by solving the inverse scattering problem for potential functions are compared with the predictions of the one-boson-exchange model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.