Abstract

The “Six-line Problem” arises in computer vision and in the automated analysis of images. Given a three-dimensional (3D) object, one extracts geometric features (for example six lines) and then, via techniques from algebraic geometry and geometric invariant theory, produces a set of 3D invariants that represents that feature set. Suppose that later an object is encountered in an image (for example, a photograph taken by a camera modeled by standard perspective projection, i.e. a “pinhole” camera), and suppose further that six lines are extracted from the object appearing in the image. The problem is to decide if the object in the image is the original 3D object. To answer this question two-dimensional (2D) invariants are computed from the lines in the image. One can show that conditions for geometric consistency between the 3D object features and the 2D image features can be expressed as a set of polynomial equations in the combined set of two- and three-dimensional invariants. The object in the image is geometrically consistent with the original object if the set of equations has a solution. One well known method to attack such sets of equations is with resultants. Unfortunately, the size and complexity of this problem made it appear overwhelming until recently. This paper will describe a solution obtained using our own variant of the Cayley–Dixon–Kapur–Saxena–Yang resultant. There is reason to believe that the resultant technique we employ here may solve other complex polynomial systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call