Abstract

In the Orienteering Problem (OP), we are given an undirected graph with edge weights and node prizes. The problem calls for a simple cycle whose total edge weight does not exceed a given threshold, while visiting a subset of nodes with maximum total prize. This NP-hard problem arises in routing and scheduling applications. We describe a branch-and-cut algorithm for finding an optimal OP solution. The algorithm is based on several families of valid inequalities. We also introduce a family of cuts, called conditional cuts, which can cut off the optimal OP solution, and propose an effective way to use them within the overall branch-and-cut framework. Exact and heuristic separation algorithms are described, as well as heuristic procedures to produce near-optimal OP solutions. An extensive computational analysis on several classes of both real-world and random instances is reported. The algorithm proved to be able to solve to optimality large-scale instances involving up to 500 nodes, within acceptable computing time. This compares favorably with previous published methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.