Abstract

Activated chemistry in coupled reaction systems has broadened our understanding of the chemical kinetics. In the case of intermediates formed in gas phase abstraction reactions (e.g., OH + HC(O)C(O)H (glyoxal) →HC(O)CO + H2O), it is particularly crucial to understand how the reaction energy is partitioned between product species as this determines the propensity for a given product to undergo "prompt" dissociation (e.g., HC(O)CO → HCO + CO) before the excess reaction energy is removed. An example of such an activated system is the OH + glyoxal + O2 coupled reaction system. In this work, we develop a molecular dynamics pipeline, which, combined with a master equation analysis, accurately models previous experimental measurements. This new work resolves previous complexities and discrepancies from earlier master equation modeling for this reaction system. The detailed molecular dynamics approach employed here is a powerful new tool for modeling challenging activated reaction systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.