Abstract

In this paper, Nonlinear Schrödinger (NLS) equation with Neumann boundary conditions is solved using finite difference method (FDM) and cubic B-spline interpolation method (CuBSIM). First, the approach is based on the FDM applied on the time and space discretization with the help of theta-weighted method. However, our main interest is the second approach, whereby FDM is applied on the time discretization and cubic B-spline is utilized as an interpolation function in the space dimension with the same help of theta-weighted method. The CuBSIM is shown to be stable by using von Neumann stability analysis. The proposed method is tested on a test problem with single soliton motion of the NLS equation. The accuracy of the numerical results is measured by the Euclidean-norm and infinity-norm. CuBSIM is found to produce more accurate results than the FDM.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.