Abstract

In this paper, advanced methods for the modeling of human cortical activity from combined high-resolution electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) data are reviewed. These methods include a subject's multicompartment head model (scalp, skull, dura mater, cortex) constructed from magnetic resonance images, multidipole source model, and regularized linear inverse source estimates. Determination of the priors in the resolution of the linear inverse problem was performed with the use of information from the hemodynamic responses of the cortical areas as revealed by block-designed fMRI.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.