Abstract

In this study, a distributed power control algorithm is proposed for Dynamic Frequency Hopping Optical-CDMA (DFH-OCDMA) system. In general, the DFH-OCDMA can support higher number of simultaneous users compared to other OCDMA techniques. However, the performance of such system degrades significantly as the received power does lower than its minimum threshold. This may obviously occur in a DFH-OCDMA network with near-far problem which consist of different fiber lengths among the users, that resulting to unequal power attenuation. The power misdistribution among simultaneous active users at the star coupler would degrade the Bit Error Rate (BER) performance for users whose transmitting signals with longer fiber lengths. In order to solve these problems, we propose an adaptive distributed power control technique for DFH-OCDMA to satisfy the target Signal to oise Ratio (S R) for all users. Taking into account the noise effects of Multiple Access Interference (MAI), Phase Induced Intensity oise (PII ) and shot noise, the system can support 100% of users with power control as compared to 33% without power control when the initial transmitted power was -1dBm with 30 simultaneous users.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.