Abstract
We propose a new optimization approach based on DC (Difference of Convex functions) programming and DCA (DC Algorithm) to the so-called Minimum M-Dominating Set problem in graphs. This problem is beforehand re-casted as a polyhedral DC program with the help of exact penalty in DC programming. The related DCA is original and computer efficient because it consists of solving a few linear programs and converges after a finite number of iterations to an integer solution while working in a continuous domain. Numerical simulations show the efficiency and robustness of DCA and its superiority with respect to standard methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.