Abstract

This paper presents a local search algorithm based on variable depth search, called the k-opt local search, for the maximum clique problem. The k-opt local search performs add and drop moves, each of which can be interpreted as 1-opt move, to search a k-opt neighborhood solution at each iteration until no better k-opt neighborhood solution can be found. To evaluate our k-opt local search algorithm, we repeatedly apply the local search for each of DIMACS benchmark graphs and compare with the state-of-the-art metaheuristics such as the genetic local search and the iterated local search reported previously. The computational results show that in spite of the absence of major metaheuristic components, the k-opt local search is capable of finding better (at least the same) solutions on average than those obtained by these metaheuristics for all the graphs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.