Abstract

In the papers [G.C. Feng, B. Yu, Combined homotopy interior point method for nonlinear programming problems, in: H. Fujita, M. Yamaguti (Eds.), Advances in Numerical Mathematics; Proceedings of the Second Japan–China Seminar on Numerical Mathematics, in: Lecture Notes in Numerical and Applied Analysis, vol. 14, Kinokuniya, Tokyo, 1995, pp. 9–16; G.C. Feng, Z.H. Lin, B. Yu, Existence of an interior pathway to a Karush–Kuhn–Tucker point of a nonconvex programming problem, Nonlinear Analysis 32 (1998) 761–768; Z.H. Lin, B. Yu, G.C. Feng, A combined homotopy interior point method for convex programming problem, Applied Mathematics and Computation 84 (1997) 193–211], a combined homotopy interior method was presented and global convergence results obtained for nonconvex nonlinear programming when the feasible set is bounded and satisfies the so called normal cone condition. However, for when the feasible set is not bounded, no result has so far been obtained. In this paper, a combined homotopy interior method for nonconvex programming problems on the unbounded feasible set is considered. Under suitable additional assumptions, boundedness of the homotopy path, and hence global convergence, is proven.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.