Abstract
Product family optimization involves not only specifying the platform from which the individual product variants will be derived but also optimizing the platform design and the individual variants. Typically these steps are performed separately, but we propose an efficient decomposed multiobjective genetic algorithm to jointly determine optimal platform selection, platform design, and variant design in product family optimization. The approach addresses limitations of prior restrictive component sharing definitions by introducing a generalized two-dimensional commonality chromosome to enable sharing components among subsets of variants. To solve the resulting high-dimensional problem in a single stage efficiently, we exploit the problem structure by decomposing it into a two-level genetic algorithm, where the upper level determines the optimal platform configuration while each lower level optimizes one of the individual variants. The decomposed approach improves scalability of the all-in-one problem dramatically, providing a practical tool for optimizing families with more variants. The proposed approach is demonstrated by optimizing a family of electric motors. Results indicate that decomposition results in improved solutions under comparable computational cost, and generalized commonality produces families with increased component sharing under the same level of performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.