Abstract

A fast marching method (FMM) using the line-of-site calculation to solve the eikonal equation is applied to an adaptive mesh. The criteria for refinement are the curvature of the propagating front. It is shown empirically that for cases involving an initial front initiated from a single point in an open three dimensional domain and constant front propagating speed that the FMM with adaptive mesh refinement (AMR) uses roughly an order of magnitude less CPU time and an order of magnitude less CPU memory than the non-AMR FMM to attain a similar level of accuracy. It is also shown that the AMR-FMM refines when the curvature is caused by boundary irregularities and also non-constant front propagating speed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.