Abstract
The site preferences within the structures of half-Heusler compounds have been evaluated through a machine-learning approach. A support-vector machine algorithm was applied to develop a model which was trained on 179 experimentally reported structures and 23 descriptors based solely on the chemical composition. The model gave excellent performance, with sensitivity of 93%, selectivity of 96%, and accuracy of 95%. As an illustration of data sanitization, two compounds (GdPtSb, HoPdBi) flagged by the model to have potentially incorrect site assignments were resynthesized and structurally characterized. The predictions of the correct site assignments from the machine-learning model were confirmed by single-crystal and powder X-ray diffraction analysis. These site assignments also corresponded to the lowest total energy configurations as revealed from first-principles calculations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.