Abstract

Chromosome instability (CIN) and aneuploidy are hallmarks of cancer cells, typically associated with aggressiveness and poor outcomes. Historically, the causative link between aneuploidy and cancer has been difficult to study due to its intrinsic complexity and the poor fitness of aneuploid cells. In this issue of Genes & Development, two companion papers (Trakala and colleagues [pp. 1079-1092] and Shoshani and colleagues [pp. 1093-1108]) exploited sophisticated mouse models to study the progression of aneuploidy from early phases to established tumors. Both groups observed that, while in the early nontumoral cells aneuploidy is characterized by random chromosomal gains, established tumors display a stereotypic karyotype with recurrent gains of only a few chromosomes. Thus, aneuploidy in tumors is not random but shows reproducible patterns of chromosomal changes induced by mechanisms that these two studies are beginning to unveil.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.